Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Amel Dakhlaoui,^a Leila Samia Smiri^a* and Ahmed Driss^b

^aUnité de Recherche 99/UR12-30, Département de Chimie, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisia, and ^bDépartement de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisia

Correspondence e-mail: leila.smiri@fsb.rnu.tn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.035 wR factor = 0.103 Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

A new amine phosphate templated by tris(2-aminoethyl)amine

The title compound, tris(2-ammonioethyl)amine dihydrogenphosphate monohydrogenphosphate, $C_6H_{21}N_4^{3+} \cdot HPO_4^{2-} \cdot H_2PO_4^{-}$, was prepared hydrothermally at 413 K over a period of 15 d. The structure exhibits extended polyanions, [(HPO₄)-(H₂PO₄)]_n³ⁿ⁻, constructed as O-H···O hydrogen-bonded ribbons. The triprotonated amine cations connect adjacent ribbons *via* N-H···O hydrogen bonds, giving rise to molecular sheets parallel to (010).

Comment

The synthesis of hybrid phosphates is of continuing interest because of their potential application in various fields (catalysis, fuel cells, protonic conductors, non-linear optics, etc.). Thus, numerous hydrogen phosphates with organic cations have been characterized, but to our knowledge, only three compounds with HPO_4^{2-} and $H_2PO_4^{-}$ entities together have been reported: $3C_{10}H_{16}NO^+ H_2PO_4^- HPO_4^{2-} H_2O$ (Mukhopadhyay et al., 1989), $C_{12}H_{32}N_3^{3+}H_2PO_4^{-}HPO_4^{2-}6H_2O$ (Neeraj & Natarajan, 2001) and $6C_3H_7N_6^+ \cdot 4H_2PO_4^- \cdot -$ HPO₄²⁻·H₂O (Janczak & Perpetuo, 2002). This paper describes the synthesis and crystal structure determination of a new organic hydrogen and dihydrogen monophosphate $C_6H_{21}N_4^{3+}$ ·HPO₄²⁻·H₂PO₄⁻, (I). Two crystallographically independent phosphate groups and a single triprotonated amine cation are present in the asymmetric unit of (I) (Fig. 1). The HP2O $_4^{2-}$ anions are assembled in dimers through strong $[07 \cdots 05^{ii} = 2.584 (2) \text{ Å}; \text{ symmetry code: (ii) } 1 - x, 1-y,$ 1-z hydrogen bonds. Each dimer aggregates with four $H_2P1O_4^-$ groups via hydrogen bonding $[O3 \cdots O8 =$ 2.526 (2) Å and $O4 \cdots O6^{1} = 2.558$ (2) Å; symmetry code: (i) 1 + x, y, z], forming extended inorganic ribbons, [(HPO₄)- $(H_2PO_4)]_n^{3n-}$, parallel to the *a* axis (Fig. 2). These ribbons can be considered as polyanions, since the $O \cdots O$ distances in the hydrogen-bond scheme maintaining their cohesion is of the same order of magnitude as in the (PO_4) tetrahedron.

The triprotonated amine cations link adjacent polyanions *via* relatively weak hydrogen bonding (Table 2), forming molecular layers parallel to the (010) plane (Fig. 3). The

Received 11 October 2004 Accepted 27 October 2004 Online 6 November 2004

Figure 1

ORTEP view (Farrugia, 1997) of the asymmetric unit of (I). Displacement ellipsoids are shown at the 50% probability level.

Figure 2

Extended $[(HPO_4)(H_2PO_4)]_n^{3n}$ ribbons in (I). Dashed lines indicate hydrogen bonds.

Figure 3

Projection of (I) along the *a* axis, showing the hydrogen-bonding interactions (dashed lines) between organic cations and the polyanions.

geometrical features of the two distinct phosphorus groups are quite regular (Table 1). For P2, $d_{av} = 1.538$ Å for P–O, with the longest distance [P2-O7 = 1.5826 (16) Å] corresponding to the protonated atom O7 and with $\theta_{av} = 109.44^{\circ}$ for O–P– O. For P1, $d_{av} = 1.541$ Å for P–O, with the longest distances [P1-O3 = 1.5729 (15) Å and P1-O4 = 1.5671 (16) Å]corresponding to the P–O(H) bonds and with $\theta_{av} = 109.38^{\circ}$ for O-P-O. The N-C and C-C distances and the C-N-C and C-C-N angles observed in the triprotonated amine cations lie within the ranges 1.474 (2)-1.516 (3) Å and 109.57 (15)-113.20 (16)°, respectively.

Experimental

The title compound was prepared from a starting mixture of $Co(acetate) \cdot 2H_2O-H_3PO_4$ (85%)-tris(2-aminoethyl)amine-ethanol in a 1:3.5:2.5:80 molar ratio under mild hydrothermal conditions (413 K, 15 d, autogenous pressure) in a Teflon-lined autoclave. The resulting product was washed with ethanol and dried in air. A suitable colorless single crystal of (I) was selected under a polarizing microscope.

Crystal data

$C_6H_{21}N_4^{3+} \cdot HO_4P^{2-} \cdot H_2O_4P^{-}$	<i>Z</i> = 2
$M_r = 342.23$	$D_x = 1.500 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 7.905 (2) Å	Cell parameters from 25
b = 9.441 (2) Å	reflections
c = 10.974 (3) Å	$\theta = 5.3-7.5^{\circ}$
$\alpha = 76.37 \ (2)^{\circ}$	$\mu = 0.33 \text{ mm}^{-1}$
$\beta = 101.29 \ (3)^{\circ}$	T = 293 (2) K
$\gamma = 105.96 (3)^{\circ}$	Parallelepiped, colorless
$V = 757.7 (3) \text{ Å}^3$	$0.26 \times 0.19 \times 0.10 \text{ mm}$

 $\theta_{\rm max} = 27.0^\circ$

 $h = 0 \rightarrow 10$

 $k = -12 \rightarrow 11$ $l = -14 \rightarrow 13$

2 standard reflections

frequency: 120 min

intensity decay: 3%

 $w = 1/[\sigma^2(F_o^2) + (0.0528P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

Extinction correction: SHELXL97 Extinction coefficient: 0.014 (3)

+ 0.417P]

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^2$

 $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer Non-profiled $\omega/2\theta$ scans Absorption correction: none 3534 measured reflections 3290 independent reflections 2774 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.012$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ wR(F²) = 0.103 S = 1.053290 reflections 186 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

P1-O2	1.5116 (15)	N-C3	1.478 (2)
P1-O1	1.5118 (14)	N-C1	1.480 (2)
P1-O4	1.5671 (16)	N1-C2	1.484 (3)
P1-O3	1.5729 (15)	N2-C4	1.477 (3)
P2-O8	1.5117 (15)	N3-C6	1.482 (2)
P2-O6	1.5231 (15)	C1-C2	1.516 (3)
P2-O5	1.5354 (15)	C3-C4	1.518 (3)
P2-O7	1.5826 (16)	C5-C6	1.516 (3)
N-C5	1.475 (3)		
O2-P1-O1	113.86 (9)	O5-P2-O7	108.37 (8)
O2-P1-O4	109.98 (10)	C5-N-C3	111.24 (15)
O1-P1-O4	111.09 (9)	C5-N-C1	109.90 (15)
O2-P1-O3	105.03 (8)	C3-N-C1	109.57 (15)
O1-P1-O3	111.70 (9)	N-C1-C2	112.86 (16)
O4-P1-O3	104.63 (9)	N1-C2-C1	112.14 (16)
O8-P2-O6	111.98 (9)	N-C3-C4	112.37 (16)
O8-P2-O5	110.52 (10)	N2-C4-C3	112.38 (16)
O6-P2-O5	110.84 (9)	N-C5-C6	113.20 (16)
O8-P2-O7	109.20 (10)	N3-C6-C5	112.56 (16)
O6-P2-O7	105.76 (9)		

Table 2Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O3-H3···O8	0.82	1.77	2.526 (2)	152
$N1 - H1C \cdot \cdot \cdot O1$	0.89	2.16	2.968 (2)	151
$N2-H2C\cdots O1$	0.89	2.01	2.859 (2)	160
$N3-H3A\cdots O5$	0.89	2.08	2.905 (2)	153
$N3-H3A\cdots O8$	0.89	2.54	3.161 (3)	127
N3−H3C···O1	0.89	2.00	2.846 (2)	158
$O4-H4\cdots O6^{i}$	0.82	1.77	2.558 (2)	161
O7-H7··· $O5$ ⁱⁱ	0.82	1.79	2.584 (2)	162
$N1-H1A\cdotsO8^{iii}$	0.89	1.97	2.760 (2)	147
$N1 - H1B \cdot \cdot \cdot O2^{iv}$	0.89	1.93	2.715 (2)	146
$N2-H2A\cdots O5^{i}$	0.89	2.00	2.804 (2)	149
$N3-H3B\cdots O2^{iii}$	0.89	1.97	2.733 (2)	142
$N3-H3B\cdots O3^{iii}$	0.89	2.60	3.417 (2)	154

Symmetry codes: (i) 1 + x, y, z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 - x, 1 - y, -z; (iv) 2 - x, 1 - y, -z.

All H atoms were allowed to ride on their parent atoms, with O– H distances of 0.82 Å, N–H distances of 0.89 Å and C–H distances of 0.97 Å, with $U_{iso}(H) = 1.2U_{eq}(O,N)$. A common isotropic displacement parameter for C-bound H atoms refined to 0.0416 (19) Å².

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3* for Windows (Farrugia, 1997); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 1999).

References

- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Janczak, J. & Perpetuo, G. J. (2002). Acta Cryst. C58, 0455–0459. Mukhopadhyay, B. P., Dattagupta, J. K. & Simonetta, M. (1989). Z. Kristallogr.
- **187**, 221–229.
- Neeraj, S. & Natarajan, S. (2001). Cryst. Growth Des. 1, 491-499.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.